Search alternatives:
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
art optimization » swarm optimization (Expand Search), after optimization (Expand Search), path optimization (Expand Search)
image complex » primase complex (Expand Search), immune complex (Expand Search), kinase complex (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a art » _ art (Expand Search), a ast (Expand Search)
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
art optimization » swarm optimization (Expand Search), after optimization (Expand Search), path optimization (Expand Search)
image complex » primase complex (Expand Search), immune complex (Expand Search), kinase complex (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a art » _ art (Expand Search), a ast (Expand Search)
-
1
The flowchart of the proposed algorithm.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
2
-
3
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…The goal of this </p><p dir="ltr">research is to combine state-of-the-art deep learning techniques with optimization algorithms to develop a precise </p><p dir="ltr">and efficient predictive system for melanoma detection. …”
-
4
-
5
-
6
Summary of literature review.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
7
Topic description.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
8
Notations along with their descriptions.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
9
Detail of the topics extracted from DUC2002.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
10
Flow diagram of the proposed model.
Published 2025“…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. …”
-
11
Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf
Published 2024“…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …”
-
12
Classification baseline performance.
Published 2025“…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …”
-
13
Feature selection results.
Published 2025“…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …”
-
14
ANOVA test result.
Published 2025“…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …”
-
15
Summary of literature review.
Published 2025“…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …”
-
16
-
17
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…There is a binary integer programming model for this problem in the literature, from which its authors proposed a genetic algorithm to obtain approximate solutions. …”
-
18
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
-
19
datasheet1_Graph Neural Networks for Maximum Constraint Satisfaction.pdf
Published 2021“…We introduce a graph neural network architecture for solving such optimization problems. …”
-
20