يعرض 141 - 160 نتائج من 196 نتيجة بحث عن '(( binary a based optimization algorithm ) OR ( binary mask based optimization algorithm ))', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 141

    S and V shaped transfer functions. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
  2. 142

    S- and V-Type transfer function diagrams. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
  3. 143

    Collaborative hunting behavior. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
  4. 144

    Friedman average rank sum test results. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
  5. 145

    IRBMO vs. variant comparison adaptation data. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
  6. 146

    Steps in the extraction of 14 coordinates from the CT slices for the curved MPR. حسب Linus Woitke (22783534)

    منشور في 2025
    "…In e), the image is skeletonized by creating a line along the center of the lower jaw. Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …"
  7. 147
  8. 148

    Testing results for classifying AD, MCI and NC. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
  9. 149

    Summary of existing CNN models. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
  10. 150

    Parameter settings. حسب Yang Cao (53545)

    منشور في 2024
    "…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. …"
  11. 151

    Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX حسب Umesh C. Sharma (10785063)

    منشور في 2021
    "…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …"
  12. 152
  13. 153

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf حسب Muhammad Awais (263096)

    منشور في 2024
    "…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"
  14. 154

    Summary of LITNET-2020 dataset. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  15. 155

    SHAP analysis for LITNET-2020 dataset. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  16. 156

    Comparison of intrusion detection systems. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  17. 157

    Parameter setting for CBOA and PSO. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  18. 158

    NSL-KDD dataset description. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  19. 159

    The architecture of LSTM cell. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  20. 160

    The architecture of ILSTM. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"