Search alternatives:
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
same process » damage process (Expand Search), simple process (Expand Search), phase process (Expand Search)
data same » data came (Expand Search), data sample (Expand Search), data space (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a based » ai based (Expand Search), _ based (Expand Search), 1 based (Expand Search)
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
same process » damage process (Expand Search), simple process (Expand Search), phase process (Expand Search)
data same » data came (Expand Search), data sample (Expand Search), data space (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a based » ai based (Expand Search), _ based (Expand Search), 1 based (Expand Search)
-
121
-
122
-
123
-
124
Plan frame of the house.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
125
Ablation test results.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
126
Hyperparameter selection test.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
127
Multiple index test results of different methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
128
Backtracking strategy diagram.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
129
Comparison of differences in literature methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
130
New building interior space layout model flow.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
131
Schematic of iteration process of IDE-IIGA.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
132
Schematic diagram of IGA chromosome coding.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
133
Example of R code with data for calculations.
Published 2023“…We obtained multiple consecutive samples using the same terms to validate against sampling bias. We consolidated national-level incident cases and deaths weekly and transformed them to a range between 0 to 100 through the min-max normalization algorithm. …”
-
134
Performance comparison of different methods.
Published 2025“…Existing solutions, such as traditional interference suppression techniques that rely on static spectrum allocation and fixed interference patterns, are no longer able to adapt to the rapidly changing electromagnetic environment and face computational complexity challenges when processing large amounts of real-time data. This study proposes an intelligent anti-interference algorithm that combines deep neural networks and game theory, and constructs a model based on near-end strategy optimization. …”
-
135
Comparative analysis of existing methods.
Published 2025“…Existing solutions, such as traditional interference suppression techniques that rely on static spectrum allocation and fixed interference patterns, are no longer able to adapt to the rapidly changing electromagnetic environment and face computational complexity challenges when processing large amounts of real-time data. This study proposes an intelligent anti-interference algorithm that combines deep neural networks and game theory, and constructs a model based on near-end strategy optimization. …”
-
136
BER at different SNR levels.
Published 2025“…Existing solutions, such as traditional interference suppression techniques that rely on static spectrum allocation and fixed interference patterns, are no longer able to adapt to the rapidly changing electromagnetic environment and face computational complexity challenges when processing large amounts of real-time data. This study proposes an intelligent anti-interference algorithm that combines deep neural networks and game theory, and constructs a model based on near-end strategy optimization. …”
-
137
The classification method of the alliance game.
Published 2025“…Existing solutions, such as traditional interference suppression techniques that rely on static spectrum allocation and fixed interference patterns, are no longer able to adapt to the rapidly changing electromagnetic environment and face computational complexity challenges when processing large amounts of real-time data. This study proposes an intelligent anti-interference algorithm that combines deep neural networks and game theory, and constructs a model based on near-end strategy optimization. …”
-
138
Box of the NSO.
Published 2025“…Existing solutions, such as traditional interference suppression techniques that rely on static spectrum allocation and fixed interference patterns, are no longer able to adapt to the rapidly changing electromagnetic environment and face computational complexity challenges when processing large amounts of real-time data. This study proposes an intelligent anti-interference algorithm that combines deep neural networks and game theory, and constructs a model based on near-end strategy optimization. …”
-
139
Decision model based on the NSO.
Published 2025“…Existing solutions, such as traditional interference suppression techniques that rely on static spectrum allocation and fixed interference patterns, are no longer able to adapt to the rapidly changing electromagnetic environment and face computational complexity challenges when processing large amounts of real-time data. This study proposes an intelligent anti-interference algorithm that combines deep neural networks and game theory, and constructs a model based on near-end strategy optimization. …”
-
140
<i>hi</i>PRS algorithm process flow.
Published 2023“…<b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …”