بدائل البحث:
bayesian optimization » based optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
a bayesian » _ bayesian (توسيع البحث)
data model » data models (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
bayesian optimization » based optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
a bayesian » _ bayesian (توسيع البحث)
data model » data models (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
-
141
Models and Dataset
منشور في 2025"…</p><p dir="ltr"><br></p><p dir="ltr"><b>TJO (Tom and Jerry Optimization):</b><br>TJO is a nature-inspired metaheuristic algorithm that models the predator-prey dynamics of the cartoon characters Tom (predator) and Jerry (prey). …"
-
142
-
143
Seed mix selection model
منشور في 2022"…</p> <p> </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …"
-
144
-
145
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
-
146
Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx
منشور في 2022"…</p>Materials and Methods<p>Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. …"
-
147
Supplementary Material 8
منشور في 2025"…</p><p dir="ltr">When applied to AMR prediction, SMOTE enhances the ability of classification models to accurately identify resistant <i>Escherichia coli</i> strains by balancing the dataset, ensuring that machine learning algorithms do not overlook rare resistance patterns. …"
-
148
-
149
-
150
-
151
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
-
152
Flowchart of the entire pipeline.
منشور في 2024"…Then, the protein feature generation algorithms described in our previous study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0315330#pone.0315330.ref022" target="_blank">22</a>] are applied to the data, and pairwise ML models are trained and evaluated (see Section Evaluation of pairwise machine learning models). …"
-
153
Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX
منشور في 2022"…</p>Methods<p>This diagnostic accuracy study used retrospective data from MIMIC-III and eICU databases. Decision trees were constructed by a hierarchical binary recursive partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value when antihypertensive treatment was given in patients with an extremely high BP (above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to the American Heart Association/American Stroke Association (AHA/ASA), the European Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines. …"
-
154
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
منشور في 2025"…RSEE projects heterogeneous input data into an exertion-conditioned latent space, aligning model predictions with observed physiological variance and mitigating false positives by explicitly modeling the overlap between athletic remodeling and subclinical pathology.…"
-
155
An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach
منشور في 2025"…The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews. …"
-
156
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
منشور في 2025"…</p>Results<p>The CatBoost model demonstrated the strongest performance, achieving an accuracy of 74.9% and an AUC of 0.792 on test data. …"
-
157
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"