Search alternatives:
common optimization » codon optimization (Expand Search), carbon optimization (Expand Search), cosmic optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a common » _ common (Expand Search)
common optimization » codon optimization (Expand Search), carbon optimization (Expand Search), cosmic optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a common » _ common (Expand Search)
-
101
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
Published 2025“…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
-
102
-
103
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
104
-
105
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
-
106
Supplementary Material 8
Published 2025“…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
-
107
Models and Dataset
Published 2025“…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …”
-
108
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
109
Seed mix selection model
Published 2022“…The genetic algorithm then operated over 1000 iterations, applying crossover and mutation processes to optimize bee richness. …”
-
110
Flow diagram of the automatic animal detection and background reconstruction.
Published 2020“…(E) The threshold value is calculated based on the histogram: it is the mean of the image subtracted by 4 (optimal value defined by trial and error). …”
-
111
Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX
Published 2022“…Decision trees were constructed by a hierarchical binary recursive partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value when antihypertensive treatment was given in patients with an extremely high BP (above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to the American Heart Association/American Stroke Association (AHA/ASA), the European Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines. …”
-
112
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
-
113
Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease
Published 2025“…<p>Crohn’s disease (CD) is a chronic inflammatory bowel disease, with infliximab (IFX) commonly used for treatment. …”
-
114
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…Details on the data sourcing process, prompt engineering strategies for large language model (LLM)-based extraction, and validation protocols are provided in the Supplementary Information section.…”