Showing 1 - 20 results of 23 for search '(( binary a common optimization algorithm ) OR ( binary image robust optimization algorithm ))', query time: 0.48s Refine Results
  1. 1
  2. 2
  3. 3

    Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results by Se-Hee Jo (20554623)

    Published 2025
    “…A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. …”
  4. 4

    A new fast filtering algorithm for a 3D point cloud based on RGB-D information by Chaochuan Jia (7256237)

    Published 2019
    “…Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
  5. 5
  6. 6
  7. 7

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  8. 8

    DataSheet_1_Raman Spectroscopic Differentiation of Streptococcus pneumoniae From Other Streptococci Using Laboratory Strains and Clinical Isolates.pdf by Marcel Dahms (9160118)

    Published 2022
    “…Improvement of the classification rate is expected with optimized model parameters and algorithms as well as with a larger spectral data base for training.…”
  9. 9

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  10. 10

    MCLP_quantum_annealer_V0.5 by Anonymous Anonymous (4854526)

    Published 2025
    “…Currently, classical high-performance and parallel spatial computing architectures are commonly employed to solve geospatial optimization problems. …”
  11. 11

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  12. 12

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  13. 13

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  14. 14

    Generalized Tensor Decomposition With Features on Multiple Modes by Jiaxin Hu (1327875)

    Published 2021
    “…Our proposal handles a broad range of data types, including continuous, count, and binary observations. …”
  15. 15

    Contextual Dynamic Pricing with Strategic Buyers by Pangpang Liu (18886419)

    Published 2024
    “…This underscores the rate optimality of our policy. Importantly, our policy is not a mere amalgamation of existing dynamic pricing policies and strategic behavior handling algorithms. …”
  16. 16

    Bayesian sequential design for sensitivity experiments with hybrid responses by Yuxia Liu (1779592)

    Published 2023
    “…<p>In experimental design, a common problem seen in practice is when the result includes one binary response and multiple continuous responses. …”
  17. 17

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf by Cecilia Lindig-León (7889777)

    Published 2020
    “…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
  18. 18
  19. 19

    Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX by Orit Mazza (12081914)

    Published 2022
    “…Decision trees were constructed by a hierarchical binary recursive partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value when antihypertensive treatment was given in patients with an extremely high BP (above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to the American Heart Association/American Stroke Association (AHA/ASA), the European Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines. …”
  20. 20

    Supplementary Material 8 by Nishitha R Kumar (19750617)

    Published 2025
    “…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”