Search alternatives:
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary mask » binary image (Expand Search)
mask based » task based (Expand Search), tasks based (Expand Search), risk based (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a driven » ai driven (Expand Search), _ driven (Expand Search), a driver (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary mask » binary image (Expand Search)
mask based » task based (Expand Search), tasks based (Expand Search), risk based (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a driven » ai driven (Expand Search), _ driven (Expand Search), a driver (Expand Search)
-
1
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
2
-
3
-
4
-
5
-
6
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…”
-
7
Event-driven data flow processing.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
8
-
9
the functioning of BRPSO.
Published 2025“…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
10
Characteristic of 6- and 10-story SMRF [99,98].
Published 2025“…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
11
The RFD’s behavior mechanism (2002).
Published 2025“…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
12
Flow diagram of the proposed model.
Published 2025“…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. This proof-of-concept study investigates whether a hybrid Logistic Regression–Artificial Bee Colony (LR–ABC) framework can enhance predictive performance in in vitro fertilization (IVF) outcomes while producing interpretable, hypothesis-driven associations with nutritional and pharmaceutical supplement use. …”
-
13
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
14
-
15
-
16
Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx
Published 2022“…</p>Materials and Methods<p>Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. …”
-
17
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
Published 2025“…</p>Methods<p>To address these challenges, we propose a novel AI-driven framework that incorporates two key methodological innovations: CardioSpectra, a structured sparse inference model, and Risk-Stratified Exertional Embedding (RSEE), a domain-specific representation learning strategy. …”
-
18
Confusion matrix.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
19
Parameter settings.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
20
Dynamic resource allocation process.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”