Search alternatives:
processing optimization » process optimization (Expand Search), process optimisation (Expand Search), routing optimization (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
data processing » image processing (Expand Search)
primary data » primary care (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a driven » ai driven (Expand Search), _ driven (Expand Search), a driver (Expand Search)
processing optimization » process optimization (Expand Search), process optimisation (Expand Search), routing optimization (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
data processing » image processing (Expand Search)
primary data » primary care (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a driven » ai driven (Expand Search), _ driven (Expand Search), a driver (Expand Search)
-
41
Accuracy vs. Epoch.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
42
Segmentation results of the proposed model.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
43
S1 Dataset -
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
44
CSCO’s flowchart.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
45
Models’ performance without optimization.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
46
-
47
RNN performance comparison with/out optimization.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
48
Comparative analysis of DDcGAN-GSOM’s True Positive Rate, False Alarm Rate, and Specificity.
Published 2025Subjects: -
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
Performance comparison of proposed system with state-of-the-art approaches.
Published 2025Subjects: -
59
-
60