Showing 141 - 160 results of 211 for search '(( binary a feature optimization algorithm ) OR ( binary 1 based optimization algorithm ))', query time: 0.63s Refine Results
  1. 141

    Iterative chart of control factor. by Ying Li (38224)

    Published 2024
    “…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  2. 142

    Details of 23 basic benchmark functions. by Ying Li (38224)

    Published 2024
    “…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  3. 143

    Related researches. by Ying Li (38224)

    Published 2024
    “…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  4. 144
  5. 145

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
  6. 146
  7. 147
  8. 148

    GSE96058 information. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…Initially, the data was organized and underwent hold-out cross-validation, data cleaning, and normalization. Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). …”
  9. 149

    The performance of classifiers. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…Initially, the data was organized and underwent hold-out cross-validation, data cleaning, and normalization. Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). …”
  10. 150
  11. 151
  12. 152
  13. 153

    Unraveling Adsorbate-Induced Structural Evolution of Iron Carbide Nanoparticles by Peter S. Rice (11805875)

    Published 2025
    “…Lastly, we explore correlations between geometric and electronic features of the active sites and the adsorption of H (H<sub>ads</sub>), using a regularized random forest machine learning algorithm. …”
  14. 154

    Contextual Dynamic Pricing with Strategic Buyers by Pangpang Liu (18886419)

    Published 2024
    “…This underscores the rate optimality of our policy. Importantly, our policy is not a mere amalgamation of existing dynamic pricing policies and strategic behavior handling algorithms. …”
  15. 155

    Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level by Giovanni Nattino (561797)

    Published 2021
    “…Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …”
  16. 156
  17. 157

    Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity by George S. Watts (7962206)

    Published 2019
    “…We tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxonomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenUniq. …”
  18. 158
  19. 159

    Analysis and design of algorithms for the manufacturing process of integrated circuits by Sonia Fleytas (16856403)

    Published 2023
    “…The (approximate) solution proposals of state-of-the-art methods include rule-based approaches, genetic algorithms, and reinforcement learning. …”
  20. 160