بدائل البحث:
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
a feature » _ feature (توسيع البحث), _ features (توسيع البحث), each feature (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
a feature » _ feature (توسيع البحث), _ features (توسيع البحث), each feature (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
-
21
-
22
-
23
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
24
Feature selection process.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
Parameter settings of the comparison algorithms.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
33
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
منشور في 2021"…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …"
-
34
Results of KNN.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
35
Comparison of key techniques in their literature.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
36
Ensemble model architecture.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
37
SHAP analysis mean value.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
38
Proposed methodology.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
39
Comparison table of the proposed model.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
40
SHAP analysis.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"