Search alternatives:
feature optimization » resource optimization (Expand Search), feature elimination (Expand Search), structure optimization (Expand Search)
process optimization » model optimization (Expand Search)
time process » like process (Expand Search), time processing (Expand Search), entire process (Expand Search)
binary time » binary image (Expand Search)
a feature » _ feature (Expand Search), _ features (Expand Search), each feature (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
feature optimization » resource optimization (Expand Search), feature elimination (Expand Search), structure optimization (Expand Search)
process optimization » model optimization (Expand Search)
time process » like process (Expand Search), time processing (Expand Search), entire process (Expand Search)
binary time » binary image (Expand Search)
a feature » _ feature (Expand Search), _ features (Expand Search), each feature (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
-
141
Unraveling Adsorbate-Induced Structural Evolution of Iron Carbide Nanoparticles
Published 2025“…Lastly, we explore correlations between geometric and electronic features of the active sites and the adsorption of H (H<sub>ads</sub>), using a regularized random forest machine learning algorithm. …”
-
142
Contextual Dynamic Pricing with Strategic Buyers
Published 2024“…<p>Personalized pricing, which involves tailoring prices based on individual characteristics, is commonly used by firms to implement a consumer-specific pricing policy. In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. …”
-
143
-
144
Summary of literature review.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
145
Topic description.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
146
Notations along with their descriptions.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
147
Detail of the topics extracted from DUC2002.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
148
-
149
-
150
Flowchart scheme of the ML-based model.
Published 2024“…<b>Fii)</b> Texture information using local binary patterns. <b>Fiii)</b> Additional texture information using Haralick texture features. …”
-
151
-
152
DataSheet_1_Raman Spectroscopic Differentiation of Streptococcus pneumoniae From Other Streptococci Using Laboratory Strains and Clinical Isolates.pdf
Published 2022“…Improvement of the classification rate is expected with optimized model parameters and algorithms as well as with a larger spectral data base for training.…”
-
153
-
154
-
155
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
Published 2019“…A particle swarm optimization algorithm is incorporated to preregress conceptual segment parameters of solutes. …”
-
156
GSE96058 information.
Published 2024“…Initially, the data was organized and underwent hold-out cross-validation, data cleaning, and normalization. Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). …”
-
157
The performance of classifiers.
Published 2024“…Initially, the data was organized and underwent hold-out cross-validation, data cleaning, and normalization. Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). …”
-
158
Sample image for illustration.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
159
Comparison analysis of computation time.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
160
Precision recall curve.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”