Search alternatives:
guide optimization » guided optimization (Expand Search), driven optimization (Expand Search), whale optimization (Expand Search)
lead optimization » global optimization (Expand Search), swarm optimization (Expand Search), whale optimization (Expand Search)
library based » laboratory based (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a guide » _ guide (Expand Search), may guide (Expand Search)
guide optimization » guided optimization (Expand Search), driven optimization (Expand Search), whale optimization (Expand Search)
lead optimization » global optimization (Expand Search), swarm optimization (Expand Search), whale optimization (Expand Search)
library based » laboratory based (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a guide » _ guide (Expand Search), may guide (Expand Search)
-
1
<i>De Novo</i> Drug Design of Targeted Chemical Libraries Based on Artificial Intelligence and Pair-Based Multiobjective Optimization
Published 2020“…In the present study, we conceived a novel pair-based multiobjective approach implemented in an adapted SMILES generative algorithm based on recurrent neural networks for the automated <i>de novo</i> design of new molecules whose overall features are optimized by finding the best trade-offs among relevant physicochemical properties (MW, logP, HBA, HBD) and additional similarity-based constraints biasing specific biological targets. …”
-
2
The AD-PSO-Guided WOA LSTM framework.
Published 2025“…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
-
3
Hyperparameters of the LSTM Model.
Published 2025“…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
-
4
Prediction results of individual models.
Published 2025“…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
-
5
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
6
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
7
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
8
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
9
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
10
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
11
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
12
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
13
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
14
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
15
-
16
-
17
Pseudo Code of RBMO.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
18
P-value on CEC-2017(Dim = 30).
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
19
Memory storage behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
20
Elite search behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”