بدائل البحث:
processes optimization » process optimization (توسيع البحث), process optimisation (توسيع البحث), property optimization (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
image processes » damage processes (توسيع البحث), image processing (توسيع البحث), change processes (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a guided » ai guided (توسيع البحث), a guide (توسيع البحث), ct guided (توسيع البحث)
processes optimization » process optimization (توسيع البحث), process optimisation (توسيع البحث), property optimization (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
image processes » damage processes (توسيع البحث), image processing (توسيع البحث), change processes (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a guided » ai guided (توسيع البحث), a guide (توسيع البحث), ct guided (توسيع البحث)
-
21
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
منشور في 2019"…This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data.…"
-
22
-
23
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …"
-
24
-
25
Pseudo Code of RBMO.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
26
P-value on CEC-2017(Dim = 30).
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
27
Memory storage behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
28
Elite search behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
29
Description of the datasets.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
30
S and V shaped transfer functions.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
31
S- and V-Type transfer function diagrams.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
32
Collaborative hunting behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
33
Friedman average rank sum test results.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
34
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
35
-
36
-
37
-
38
Parameter settings.
منشور في 2024"…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. …"
-
39
-
40
Thesis-RAMIS-Figs_Slides
منشور في 2024"…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…"