بدائل البحث:
integration algorithms » detection algorithms (توسيع البحث), generation algorithm (توسيع البحث), identification algorithms (توسيع البحث)
bayesian optimization » based optimization (توسيع البحث)
learning integration » learning motivation (توسيع البحث), learning interatomic (توسيع البحث), learning detection (توسيع البحث)
amp bayesian » a bayesian (توسيع البحث), art bayesian (توسيع البحث), task bayesian (توسيع البحث)
a learning » _ learning (توسيع البحث), e learning (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
integration algorithms » detection algorithms (توسيع البحث), generation algorithm (توسيع البحث), identification algorithms (توسيع البحث)
bayesian optimization » based optimization (توسيع البحث)
learning integration » learning motivation (توسيع البحث), learning interatomic (توسيع البحث), learning detection (توسيع البحث)
amp bayesian » a bayesian (توسيع البحث), art bayesian (توسيع البحث), task bayesian (توسيع البحث)
a learning » _ learning (توسيع البحث), e learning (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
-
1
-
2
MSE for ILSTM algorithm in binary classification.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
3
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
منشور في 2025"…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …"
-
4
Proposed Algorithm.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
5
Analysis and design of algorithms for the manufacturing process of integrated circuits
منشور في 2023"…The (approximate) solution proposals of state-of-the-art methods include rule-based approaches, genetic algorithms, and reinforcement learning. There is a binary integer programming model for this problem in the literature, from which its authors proposed a genetic algorithm to obtain approximate solutions. …"
-
6
-
7
Raw Data for "Development of Decision Support Systems Based on Fuzzy and Binary Logic for the FOREX Foreign Exchange Market"
منشور في 2025"…The above indicates the need for a comprehensive study that would combine the advantages of various logical approaches, machine learning and multi-timeframe analysis within a single hybrid DSS. …"
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…"
-
16
An Example of a WPT-MEC Network.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
17
-
18
-
19
AttentiveSkin: To Predict Skin Corrosion/Irritation Potentials of Chemicals via Explainable Machine Learning Methods
منشور في 2024"…Then, a series of binary classifiers were developed with five machine learning (ML) algorithms and six molecular representations. …"
-
20
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
منشور في 2025"…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …"