يعرض 1 - 20 نتائج من 21 نتيجة بحث عن '(( binary a learning location algorithm ) OR ( binary a bayesian optimization algorithm ))', وقت الاستعلام: 0.65s تنقيح النتائج
  1. 1
  2. 2

    Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things حسب Ashok Kumar K (21441108)

    منشور في 2025
    "…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Bayesian sequential design for sensitivity experiments with hybrid responses حسب Yuxia Liu (1779592)

    منشور في 2023
    "…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …"
  8. 8
  9. 9
  10. 10
  11. 11

    Results of the model on test sets 1 and 2. حسب Rémy Peyret (14691736)

    منشور في 2023
    "…We describe a patch-based algorithm that incorporates a convolutional neural network to detect and locate invasive carcinoma on breast whole-slide images. …"
  12. 12

    Data set constituents. حسب Rémy Peyret (14691736)

    منشور في 2023
    "…We describe a patch-based algorithm that incorporates a convolutional neural network to detect and locate invasive carcinoma on breast whole-slide images. …"
  13. 13

    Scanners and staining methods. حسب Rémy Peyret (14691736)

    منشور في 2023
    "…We describe a patch-based algorithm that incorporates a convolutional neural network to detect and locate invasive carcinoma on breast whole-slide images. …"
  14. 14
  15. 15

    Algoritmo de detección de odio en español (Algorithm for detection of hate speech in Spanish) حسب Elias Said-Hung (10790310)

    منشور في 2024
    "…</li></ul><h2>Training Process</h2><h3>Pre-workout</h3><ul><li>Batch size: 16</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li></ul><h3>Fine-tuning</h3><ul><li>Batch size: 128</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li><li>Custom metrics:</li><li>Recall for non-hate class</li><li>Precision for hate class</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.9 (non-hate)</li><li>Precision at recall=0.9 (hate)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Metrics by class</li><li>Confusion matrix</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required (see requirements.txt for the full list):</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li></ul><h2>Usage</h2><p dir="ltr">The model expects input data with the following specifications:</p><ol><li><b>Data Format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Mandatory column name: <code>text</code> (type string)</li><li>Optional column name: <code>label</code> (type integer, 0 or 1) if available for evaluation</li></ul><ol><li><b>Text Preprocessing</b>:</li></ol><ul><li>Text will be automatically converted to lowercase during processing</li><li>Maximum length: 128 tokens (longer texts will be truncated)</li><li>Special characters, URLs, and emojis must remain in the text (the tokenizer handles these)</li></ul><ol><li><b>Label Encoding</b>:</li></ol><ul><li><code>0</code> = No hateful content (including neutral/positive content)</li><li>1 = Hate speech</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at:Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
  16. 16

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
  17. 17

    Supplementary Material for: Utilizing Deep Learning to Identify Electron-Dense Deposits in Renal Biopsy Electron Microscopy Images حسب figshare admin karger (2628495)

    منشور في 2025
    "…This study aimed to develop a deep learning -based platform to automatically classify the locations of electron-dense deposits in EM images of kidney biopsies. …"
  18. 18

    Data_Sheet_1_Improving Crowdsourcing-Based Image Classification Through Expanded Input Elicitation and Machine Learning.PDF حسب Romena Yasmin (12970919)

    منشور في 2022
    "…<p>This work investigates how different forms of input elicitation obtained from crowdsourcing can be utilized to improve the quality of inferred labels for image classification tasks, where an image must be labeled as either positive or negative depending on the presence/absence of a specified object. Five types of input elicitation methods are tested: binary classification (positive or negative); the (x, y)-coordinate of the position participants believe a target object is located; level of confidence in binary response (on a scale from 0 to 100%); what participants believe the majority of the other participants' binary classification is; and participant's perceived difficulty level of the task (on a discrete scale). …"
  19. 19
  20. 20

    Model & data for automated classification of male and female house wren song حسب Karan Odom (18271399)

    منشور في 2025
    "…<p dir="ltr">These files include deep learning algorithms and the data that are part of a publication aimed at locating and classifying male and female house wren songs in audio recordings. …"