Showing 1 - 16 results of 16 for search '(( binary a learning location algorithm ) OR ( binary amp based optimization algorithm ))', query time: 0.44s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    Results of the model on test sets 1 and 2. by Rémy Peyret (14691736)

    Published 2023
    “…We describe a patch-based algorithm that incorporates a convolutional neural network to detect and locate invasive carcinoma on breast whole-slide images. …”
  7. 7

    Data set constituents. by Rémy Peyret (14691736)

    Published 2023
    “…We describe a patch-based algorithm that incorporates a convolutional neural network to detect and locate invasive carcinoma on breast whole-slide images. …”
  8. 8

    Scanners and staining methods. by Rémy Peyret (14691736)

    Published 2023
    “…We describe a patch-based algorithm that incorporates a convolutional neural network to detect and locate invasive carcinoma on breast whole-slide images. …”
  9. 9
  10. 10

    Algoritmo de detección de odio en español (Algorithm for detection of hate speech in Spanish) by Elias Said-Hung (10790310)

    Published 2024
    “…</li></ul><h2>Training Process</h2><h3>Pre-workout</h3><ul><li>Batch size: 16</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li></ul><h3>Fine-tuning</h3><ul><li>Batch size: 128</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li><li>Custom metrics:</li><li>Recall for non-hate class</li><li>Precision for hate class</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.9 (non-hate)</li><li>Precision at recall=0.9 (hate)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Metrics by class</li><li>Confusion matrix</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required (see requirements.txt for the full list):</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li></ul><h2>Usage</h2><p dir="ltr">The model expects input data with the following specifications:</p><ol><li><b>Data Format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Mandatory column name: <code>text</code> (type string)</li><li>Optional column name: <code>label</code> (type integer, 0 or 1) if available for evaluation</li></ul><ol><li><b>Text Preprocessing</b>:</li></ol><ul><li>Text will be automatically converted to lowercase during processing</li><li>Maximum length: 128 tokens (longer texts will be truncated)</li><li>Special characters, URLs, and emojis must remain in the text (the tokenizer handles these)</li></ul><ol><li><b>Label Encoding</b>:</li></ol><ul><li><code>0</code> = No hateful content (including neutral/positive content)</li><li>1 = Hate speech</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at:Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  11. 11

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  12. 12

    Supplementary Material for: Utilizing Deep Learning to Identify Electron-Dense Deposits in Renal Biopsy Electron Microscopy Images by figshare admin karger (2628495)

    Published 2025
    “…This study aimed to develop a deep learning -based platform to automatically classify the locations of electron-dense deposits in EM images of kidney biopsies. …”
  13. 13

    Data_Sheet_1_Improving Crowdsourcing-Based Image Classification Through Expanded Input Elicitation and Machine Learning.PDF by Romena Yasmin (12970919)

    Published 2022
    “…<p>This work investigates how different forms of input elicitation obtained from crowdsourcing can be utilized to improve the quality of inferred labels for image classification tasks, where an image must be labeled as either positive or negative depending on the presence/absence of a specified object. Five types of input elicitation methods are tested: binary classification (positive or negative); the (x, y)-coordinate of the position participants believe a target object is located; level of confidence in binary response (on a scale from 0 to 100%); what participants believe the majority of the other participants' binary classification is; and participant's perceived difficulty level of the task (on a discrete scale). …”
  14. 14
  15. 15

    Model & data for automated classification of male and female house wren song by Karan Odom (18271399)

    Published 2025
    “…<p dir="ltr">These files include deep learning algorithms and the data that are part of a publication aimed at locating and classifying male and female house wren songs in audio recordings. …”
  16. 16

    Data_Sheet_1_Identifying Depressed Essential Tremor Using Resting-State Voxel-Wise Global Brain Connectivity: A Multivariate Pattern Analysis.pdf by Yufen Li (428110)

    Published 2021
    “…<p>Background and Objective: Although depression is one of the most common non-motor symptoms in essential tremor (ET), its pathogenesis and diagnosis biomarker are still unknown. Recently, machine learning multivariate pattern analysis (MVPA) combined with connectivity mapping of resting-state fMRI has provided a promising way to identify patients with depressed ET at the individual level and help to reveal the brain network pathogenesis of depression in patients with ET.…”