يعرض 101 - 120 نتائج من 172 نتيجة بحث عن '(( binary a learning optimization algorithm ) OR ( binary arm driven optimization algorithm ))', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 101

    Parameter sensitivity of BIMGO. حسب Ying Li (38224)

    منشور في 2024
    "…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  2. 102

    Details of the medical datasets. حسب Ying Li (38224)

    منشور في 2024
    "…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  3. 103

    The flowchart of IMGO. حسب Ying Li (38224)

    منشور في 2024
    "…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  4. 104

    Comparison in terms of the selected features. حسب Ying Li (38224)

    منشور في 2024
    "…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  5. 105

    Iterative chart of control factor. حسب Ying Li (38224)

    منشور في 2024
    "…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  6. 106

    Details of 23 basic benchmark functions. حسب Ying Li (38224)

    منشور في 2024
    "…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  7. 107

    Related researches. حسب Ying Li (38224)

    منشور في 2024
    "…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  8. 108

    S1 Dataset - حسب Ying Li (38224)

    منشور في 2024
    "…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  9. 109

    Flow diagram of the proposed model. حسب Uğur Ejder (22683228)

    منشور في 2025
    "…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. …"
  10. 110

    Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX حسب Umesh C. Sharma (10785063)

    منشور في 2021
    "…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …"
  11. 111
  12. 112

    Contextual Dynamic Pricing with Strategic Buyers حسب Pangpang Liu (18886419)

    منشور في 2024
    "…This underscores the rate optimality of our policy. Importantly, our policy is not a mere amalgamation of existing dynamic pricing policies and strategic behavior handling algorithms. …"
  13. 113
  14. 114

    Wilcoxon test results for feature selection. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …"
  15. 115

    Feature selection metrics and their definitions. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …"
  16. 116

    Statistical summary of all models. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …"
  17. 117

    Feature selection results. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …"
  18. 118

    ANOVA test for feature selection. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …"
  19. 119

    Classification performance of ML and DL models. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …"
  20. 120

    Table_1_Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique.DOCX حسب Hasan Zulfiqar (12117255)

    منشور في 2023
    "…In the model, promotor sequences were encoded by three different kinds of feature descriptors, namely, accumulated nucleotide frequency, k-mer nucleotide composition, and binary encodings. The obtained features were optimized by using correlation and the mRMR-based algorithm. …"