Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a model » _ model (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a model » _ model (Expand Search)
-
161
Process flow diagram of CBFD.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
162
Precision recall curve.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
163
Models and Dataset
Published 2025“…</p><p dir="ltr"><br></p><p dir="ltr"><b>TJO (Tom and Jerry Optimization):</b><br>TJO is a nature-inspired metaheuristic algorithm that models the predator-prey dynamics of the cartoon characters Tom (predator) and Jerry (prey). …”
-
164
-
165
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
166
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
Published 2022“…<p>It is of great practical and theoretical significance to identify driver fatigue state in real time and accurately and provide active safety warning in time. In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
-
167
Confusion matrix.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
168
Parameter settings.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
169
Event-driven data flow processing.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
170
Dynamic resource allocation process.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
171
Silibinin solubilization: combined effect of co-solvency and inclusion complex formation
Published 2024“…The solubility in PBS-ethanol mixtures followed a log-linear model. SLB solubility in the presence of the ethanol co-solvent and HP-β-CD complexing agent was optimized by adopting a genetic algorithm suggesting the phosphate buffer saline solution supplemented by 6%v/v ethanol and 8 mM HP-β-CD as an optimized medium. …”
-
172
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
Published 2025“…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
-
173
Seed mix selection model
Published 2022“…</p> <p> </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …”
-
174
-
175
Thesis-RAMIS-Figs_Slides
Published 2024“…Importantly, this strategy locates samples adaptively on the transition between facies which improves the performance of conventional \emph{<i>MPS</i>} algorithms. In conclusion, this work shows that preferential sampling can contribute in \emph{<i>MPS</i>} even at very small sampling regimes and, as a corollary, demonstrates that prior models (obtained form a training image) can be used effectively not only to simulate non-sensed variables of the field, but to decide where to measure next.…”
-
176
Table_1_Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique.DOCX
Published 2023“…This study aimed to develop a machine learning-based model to predict promotors in Agrobacterium tumefaciens (A. tumefaciens) strain C58. …”
-
177
Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model
Published 2025“…This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …”
-
178
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…<p>In experimental design, a common problem seen in practice is when the result includes one binary response and multiple continuous responses. …”
-
179
Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports
Published 2020“…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…”
-
180
Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease
Published 2025“…Twenty differential radiomics features were selected for integration into the ML models. All models demonstrated strong predictive performance in the validation cohort, with a mean area under the curve of 0.849. …”