Search alternatives:
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
a process » _ process (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
binary 1 » binary _ (Expand Search)
1 based » _ based (Expand Search)
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
a process » _ process (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
binary 1 » binary _ (Expand Search)
1 based » _ based (Expand Search)
-
101
After upsampling.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
102
Results of Extra tree.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
103
Gradient boosting classifier results.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
104
Image processing workflow.
Published 2020“…<p>Raw fluorescent microscope images (a) were processed with a binary segmentation algorithm, and clusters of bacterial cells were manually annotated. …”
-
105
-
106
Related Work Summary.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
107
Simulation parameters.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
108
Training losses for N = 10.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
109
Normalized computation rate for N = 10.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
110
Summary of Notations Used in this paper.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
111
-
112
Wilcoxon test results for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
113
Feature selection metrics and their definitions.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
114
Statistical summary of all models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
115
Feature selection results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
116
ANOVA test for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
117
Classification performance of ML and DL models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
118
Hyperparameters of the LSTM Model.
Published 2025“…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
-
119
The AD-PSO-Guided WOA LSTM framework.
Published 2025“…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
-
120
Prediction results of individual models.
Published 2025“…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”