Search alternatives:
process optimization » model optimization (Expand Search)
estimation algorithm » optimization algorithms (Expand Search), maximization algorithm (Expand Search), detection algorithm (Expand Search)
robust estimation » pose estimation (Expand Search), risk estimation (Expand Search)
a process » _ process (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a robust » _ robust (Expand Search)
process optimization » model optimization (Expand Search)
estimation algorithm » optimization algorithms (Expand Search), maximization algorithm (Expand Search), detection algorithm (Expand Search)
robust estimation » pose estimation (Expand Search), risk estimation (Expand Search)
a process » _ process (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a robust » _ robust (Expand Search)
-
21
-
22
-
23
An Example of a WPT-MEC Network.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
24
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…The (approximate) solution proposals of state-of-the-art methods include rule-based approaches, genetic algorithms, and reinforcement learning. There is a binary integer programming model for this problem in the literature, from which its authors proposed a genetic algorithm to obtain approximate solutions. …”
-
25
Individual Transition Label Noise Logistic Regression in Binary Classification for Incorrectly Labeled Data
Published 2021“…<p>We consider a binary classification problem in the case where some observations in the training data are incorrectly labeled. …”
-
26
Determination of the Solute Content and Volumetric Properties of Binary Ionic Liquid Mixtures Using a Global Regularity of Molar Volume Expansion
Published 2021“…For instance, the water content, which is of great significance in IL studies, can easily be estimated using the proposed algorithm. By doing so, an overall AARD of 3.47% was obtained for the estimation of the water content of 68 binary systems. …”
-
27
-
28
Classification performance after optimization.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
29
ANOVA test for optimization results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
30
Wilcoxon test results for optimization.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
31
-
32
The flowchart of the proposed algorithm.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
33
Datasets and their properties.
Published 2023“…The approach used in this study designed a sub-population selective mechanism that dynamically assigns individuals to a 2-level optimization process. …”
-
34
Parameter settings.
Published 2023“…The approach used in this study designed a sub-population selective mechanism that dynamically assigns individuals to a 2-level optimization process. …”
-
35
-
36
-
37
-
38
-
39
-
40
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
Published 2025“…The performance of the proposed LEGAN-BEPO-BCMANET technique attains 29.786%, 19.25%, 22.93%, 27.21%, 31.02%, 26.91%, and 25.61% greater throughput, compared to existing methods like Blockchain-based BATMAN protocol utilizing MANET with an ensemble algorithm (BATMAN-MANET), Block chain-based trusted distributed routing scheme with optimized dropout ensemble extreme learning neural network in MANET (DEELNN-MANET), A secured trusted routing utilizing structure of a new directed acyclic graph-blockchain in MANET internet of things environment (DAG-MANET), An Optimized Link State Routing Protocol with Blockchain Framework for Efficient Video-Packet Transmission and Security over MANET (OLSRP-MANET), Auto-metric Graph Neural Network based Blockchain Technology for Protected Dynamic Optimum Routing in MANET (AGNN-MANET) and Data security-based routing in MANETs under key management process (DSR-MANET) respectively.…”