Search alternatives:
process optimization » model optimization (Expand Search)
robust optimization » robust estimation (Expand Search), joint optimization (Expand Search)
a process » _ process (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a robust » _ robust (Expand Search)
process optimization » model optimization (Expand Search)
robust optimization » robust estimation (Expand Search), joint optimization (Expand Search)
a process » _ process (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a robust » _ robust (Expand Search)
-
121
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached RCal2 = 0.86 and RVal2 = 0.84, with a Kappa value of 0.53. …”
-
122
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached RCal2 = 0.86 and RVal2 = 0.84, with a Kappa value of 0.53. …”
-
123
Models and Dataset
Published 2025“…<p dir="ltr"><b>P3DE (Parameter-less Population Pyramid with Deep Ensemble):</b><br>P3DE is a hybrid feature selection framework that combines the Parameter-less Population Pyramid (P3) metaheuristic optimization algorithm with a deep ensemble of autoencoders. …”
-
124
Data_Sheet_1_The impact of family urban integration on migrant worker mental health in China.docx
Published 2024“…The results of this study lead the authors to recommend formulating a family-centered policy for migrant workers to reside in urban areas, optimizing the allocation of medical resources and public services, and improving family urban integration among migrant workers in order to avoid mental health problems in the process of urban integration.…”
-
125
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
Published 2025“…<p dir="ltr">Objective<br><br>To evaluate the predictive ability of the "habitat" variable, in isolation, to determine mushroom toxicity (edible or poisonous) using a Support Vector Machine (SVM) classification model, investigating whether this single feature is sufficient to build a robust and reliable classifier. …”
-
126
Supplementary Material 8
Published 2025“…</li><li><b>Adaboost: </b>A boosting algorithm that combines weak classifiers iteratively, refining predictions and improving the identification of antimicrobial resistance patterns.…”
-
127
Table_1_iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.docx
Published 2020“…In this predictor, we introduced a sequence-based feature algorithm consisting of two feature representations, (1) k-mer spectrum and (2) positional nucleotide binary vector, to capture the sequential characteristics of 5hmC sites. …”
-
128
Seed mix selection model
Published 2022“…Classic genetic algorithms consider a population of chromosomes and apply principles of natural selection (selection, mutation, and crossover processes) to generate optimal solutions. …”
-
129
Data Sheet 1_Detection of litchi fruit maturity states based on unmanned aerial vehicle remote sensing and improved YOLOv8 model.docx
Published 2025“…The results showed significant stage-based changes in the maturity states of litchi fruits: during the rapid growth phase, the fruit count increased by 18.28%; during the maturity differentiation phase, semi-mature fruits accounted for approximately 53%; and during the peak maturity phase, mature fruits exceeded 50%, with a fruit drop rate of 11.46%. In addition, YOLOv8-FPDW was more competitive than mainstream object detection algorithms. …”
-
130
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">IC50 (µg/mL): The concentration at which 50% of cells are inhibited, used as a toxicity threshold.</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …”