Showing 81 - 98 results of 98 for search '(( binary a process optimization algorithm ) OR ( binary basic process optimization algorithm ))*', query time: 0.46s Refine Results
  1. 81

    The performance of classifiers. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
  2. 82

    Contextual Dynamic Pricing with Strategic Buyers by Pangpang Liu (18886419)

    Published 2024
    “…This underscores the rate optimality of our policy. Importantly, our policy is not a mere amalgamation of existing dynamic pricing policies and strategic behavior handling algorithms. …”
  3. 83
  4. 84

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
  5. 85
  6. 86

    Image1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF by Sizhuo Yu (11429743)

    Published 2021
    “…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …”
  7. 87

    Image3_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF by Sizhuo Yu (11429743)

    Published 2021
    “…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …”
  8. 88

    Image2_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF by Sizhuo Yu (11429743)

    Published 2021
    “…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …”
  9. 89

    DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf by Sizhuo Yu (11429743)

    Published 2021
    “…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …”
  10. 90
  11. 91

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
  12. 92

    Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction by Raul A. Flores (2910539)

    Published 2020
    “…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…”
  13. 93

    Table_1_iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.docx by Yuan Liu (88411)

    Published 2020
    “…In this predictor, we introduced a sequence-based feature algorithm consisting of two feature representations, (1) k-mer spectrum and (2) positional nucleotide binary vector, to capture the sequential characteristics of 5hmC sites. …”
  14. 94

    Seed mix selection model by Bethanne Bruninga-Socolar (10923639)

    Published 2022
    “…Classic genetic algorithms consider a population of chromosomes and apply principles of natural selection (selection, mutation, and crossover processes) to generate optimal solutions. …”
  15. 95

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached RCal2  = 0.86 and RVal2 = 0.84, with a Kappa value of 0.53. …”
  16. 96

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached RCal2  = 0.86 and RVal2 = 0.84, with a Kappa value of 0.53. …”
  17. 97

    Data_Sheet_1_The impact of family urban integration on migrant worker mental health in China.docx by Xiaotong Sun (6535064)

    Published 2024
    “…The results of this study lead the authors to recommend formulating a family-centered policy for migrant workers to reside in urban areas, optimizing the allocation of medical resources and public services, and improving family urban integration among migrant workers in order to avoid mental health problems in the process of urban integration.…”
  18. 98

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles by Soham Savarkar (21811825)

    Published 2025
    “…</p><p dir="ltr">IC50 (µg/mL): The concentration at which 50% of cells are inhibited, used as a toxicity threshold.</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …”