بدائل البحث:
process optimization » model optimization (توسيع البحث)
models optimization » model optimization (توسيع البحث), wolf optimization (توسيع البحث), codon optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
a process » _ process (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
process optimization » model optimization (توسيع البحث)
models optimization » model optimization (توسيع البحث), wolf optimization (توسيع البحث), codon optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
a process » _ process (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
-
81
Simulation parameters.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
82
Training losses for N = 10.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
83
Normalized computation rate for N = 10.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
84
Summary of Notations Used in this paper.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
85
Confusion matrix.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
86
Parameter settings.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
87
Wilcoxon test results for feature selection.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
88
Feature selection metrics and their definitions.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
89
Statistical summary of all models.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
90
Feature selection results.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
91
ANOVA test for feature selection.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
92
Classification performance of ML and DL models.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
93
-
94
Thesis-RAMIS-Figs_Slides
منشور في 2024"…In this direction, the option of estimating the statistics of the model directly from the training image (performing a refined pattern search instead of simulating data) is a very promising.…"
-
95
Hyperparameters of the LSTM Model.
منشور في 2025"…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
-
96
The AD-PSO-Guided WOA LSTM framework.
منشور في 2025"…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
-
97
Prediction results of individual models.
منشور في 2025"…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
-
98
-
99
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
100