Search alternatives:
maximization algorithm » optimization algorithms (Expand Search), classification algorithm (Expand Search)
process optimization » model optimization (Expand Search)
process maximization » profit maximization (Expand Search), process optimisation (Expand Search), process simulation (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
a process » _ process (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
maximization algorithm » optimization algorithms (Expand Search), classification algorithm (Expand Search)
process optimization » model optimization (Expand Search)
process maximization » profit maximization (Expand Search), process optimisation (Expand Search), process simulation (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
a process » _ process (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
-
1
-
2
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
3
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
4
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
5
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
6
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
7
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
8
Normalized computation rate for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
9
Summary of Notations Used in this paper.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
10
MCLP_quantum_annealer_V0.5
Published 2025“…This paper presents a quantum computing path for Transformation-to-Sampling-to-Verification of geospatial optimization problems, adaptable to the controlled qubit scale and coherence constraints under current NISQ conditions. …”
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…”
-
20
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025“…The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05–16.69, 0.05–16.69, and 0.09–326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment.…”