Showing 1 - 20 results of 29 for search '(( binary a risk classification algorithm ) OR ( binary image guided optimization algorithm ))*', query time: 0.94s Refine Results
  1. 1

    Table 1_A comparative analysis of binary and multi-class classification machine learning algorithms to detect current frailty status using the English longitudinal study of ageing... by Charmayne Mary Lee Hughes (12959972)

    Published 2025
    “…</p>Conclusion<p>Machine learning algorithms show promise for the detection of current frailty status, particularly in binary classification. …”
  2. 2
  3. 3
  4. 4
  5. 5

    Comparison with previous studies. by Ji Seung Ryu (16187857)

    Published 2023
    “…Three datasets were used for the experiment: the male, female, and entire dataset. A cutoff for binary classification was defined as the meaningful as a screening test (<132 g/m<sup>2</sup> vs. ≥132 g/m<sup>2</sup>, <109 g/m<sup>2</sup> vs. ≥109 g/m<sup>2</sup>). …”
  6. 6

    Dataset characteristics. by Ji Seung Ryu (16187857)

    Published 2023
    “…Three datasets were used for the experiment: the male, female, and entire dataset. A cutoff for binary classification was defined as the meaningful as a screening test (<132 g/m<sup>2</sup> vs. ≥132 g/m<sup>2</sup>, <109 g/m<sup>2</sup> vs. ≥109 g/m<sup>2</sup>). …”
  7. 7

    Acronym table. by Ji Seung Ryu (16187857)

    Published 2023
    “…Three datasets were used for the experiment: the male, female, and entire dataset. A cutoff for binary classification was defined as the meaningful as a screening test (<132 g/m<sup>2</sup> vs. ≥132 g/m<sup>2</sup>, <109 g/m<sup>2</sup> vs. ≥109 g/m<sup>2</sup>). …”
  8. 8
  9. 9
  10. 10

    Fairness in Machine Learning: A Review for Statisticians by Xianwen He (22529252)

    Published 2025
    “…We organize these fairness-enhancing mechanisms into three categories—pre-processing, in-processing, and post-processing—corresponding to different stages of the machine learning lifecycle and varying levels of access to the underlying algorithm. The discussion focuses on fairness in binary classification models using numerical tabular data, which serve as a foundation for addressing fairness in more complex algorithms. …”
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20

    Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data by Fei Xue (24567)

    Published 2021
    “…Specifically, the proposed method obtains the optimal DTR via integrating estimations of decision rules at multiple stages into a single multicategory classification algorithm without imposing additional constraints, which is also more computationally efficient and robust. …”