بدائل البحث:
risk classification » based classification (توسيع البحث), class classification (توسيع البحث), _ classification (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary mask » binary image (توسيع البحث)
mask based » task based (توسيع البحث), tasks based (توسيع البحث), risk based (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a risk » _ risk (توسيع البحث)
risk classification » based classification (توسيع البحث), class classification (توسيع البحث), _ classification (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary mask » binary image (توسيع البحث)
mask based » task based (توسيع البحث), tasks based (توسيع البحث), risk based (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a risk » _ risk (توسيع البحث)
-
1
Table 1_A comparative analysis of binary and multi-class classification machine learning algorithms to detect current frailty status using the English longitudinal study of ageing...
منشور في 2025"…</p>Conclusion<p>Machine learning algorithms show promise for the detection of current frailty status, particularly in binary classification. …"
-
2
-
3
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…"
-
4
Comparison with previous studies.
منشور في 2023"…Three datasets were used for the experiment: the male, female, and entire dataset. A cutoff for binary classification was defined as the meaningful as a screening test (<132 g/m<sup>2</sup> vs. ≥132 g/m<sup>2</sup>, <109 g/m<sup>2</sup> vs. ≥109 g/m<sup>2</sup>). …"
-
5
Dataset characteristics.
منشور في 2023"…Three datasets were used for the experiment: the male, female, and entire dataset. A cutoff for binary classification was defined as the meaningful as a screening test (<132 g/m<sup>2</sup> vs. ≥132 g/m<sup>2</sup>, <109 g/m<sup>2</sup> vs. ≥109 g/m<sup>2</sup>). …"
-
6
Acronym table.
منشور في 2023"…Three datasets were used for the experiment: the male, female, and entire dataset. A cutoff for binary classification was defined as the meaningful as a screening test (<132 g/m<sup>2</sup> vs. ≥132 g/m<sup>2</sup>, <109 g/m<sup>2</sup> vs. ≥109 g/m<sup>2</sup>). …"
-
7
-
8
-
9
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
-
10
Fairness in Machine Learning: A Review for Statisticians
منشور في 2025"…We organize these fairness-enhancing mechanisms into three categories—pre-processing, in-processing, and post-processing—corresponding to different stages of the machine learning lifecycle and varying levels of access to the underlying algorithm. The discussion focuses on fairness in binary classification models using numerical tabular data, which serve as a foundation for addressing fairness in more complex algorithms. …"
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"