Search alternatives:
structure optimization » structural optimization (Expand Search), structure determination (Expand Search)
process optimization » model optimization (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
a structure » _ structure (Expand Search), age structure (Expand Search), rna structure (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
structure optimization » structural optimization (Expand Search), structure determination (Expand Search)
process optimization » model optimization (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
a structure » _ structure (Expand Search), age structure (Expand Search), rna structure (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
-
81
GSE96058 information.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
82
The performance of classifiers.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
83
-
84
-
85
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
Published 2024“…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
-
86
Contextual Dynamic Pricing with Strategic Buyers
Published 2024“…This underscores the rate optimality of our policy. Importantly, our policy is not a mere amalgamation of existing dynamic pricing policies and strategic behavior handling algorithms. …”
-
87
-
88
Thesis-RAMIS-Figs_Slides
Published 2024“…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
-
89
Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction
Published 2020“…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…”
-
90
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
-
91
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
Published 2025“…</p>Methods<p>To address these challenges, we propose a novel AI-driven framework that incorporates two key methodological innovations: CardioSpectra, a structured sparse inference model, and Risk-Stratified Exertional Embedding (RSEE), a domain-specific representation learning strategy. …”
-
92
Table_1_iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.docx
Published 2020“…In this predictor, we introduced a sequence-based feature algorithm consisting of two feature representations, (1) k-mer spectrum and (2) positional nucleotide binary vector, to capture the sequential characteristics of 5hmC sites. …”
-
93
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
-
94
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
-
95
Seed mix selection model
Published 2022“…Classic genetic algorithms consider a population of chromosomes and apply principles of natural selection (selection, mutation, and crossover processes) to generate optimal solutions. …”
-
96
Supplementary Material 8
Published 2025“…</li><li><b>Adaboost: </b>A boosting algorithm that combines weak classifiers iteratively, refining predictions and improving the identification of antimicrobial resistance patterns.…”
-
97
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
-
98
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…Details on the data sourcing process, prompt engineering strategies for large language model (LLM)-based extraction, and validation protocols are provided in the Supplementary Information section.…”