Showing 1 - 20 results of 53 for search '(( binary a swarm optimization algorithm ) OR ( binary complex process optimization algorithm ))', query time: 0.53s Refine Results
  1. 1

    MSE for ILSTM algorithm in binary classification. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    Table_1_A scheduling route planning algorithm based on the dynamic genetic algorithm with ant colony binary iterative optimization for unmanned aerial vehicle spraying in multiple... by Yangyang Liu (807797)

    Published 2022
    “…Simulation tests reveal that the dynamic genetic algorithm with ant colony binary iterative optimization (DGA-ACBIO) proposed in this study shortens the optimal flight range by 715.8 m, 428.3 m, 589 m, and 287.6 m compared to the dynamic genetic algorithm, ant colony binary iterative algorithm, artificial fish swarm algorithm (AFSA) and particle swarm optimization (PSO), respectively, for multiple tea field scheduling route planning. …”
  7. 7

    Proposed Algorithm. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  8. 8
  9. 9

    Pressure-Stabilized Zinc Trifluoride by Shiyin Ma (5793191)

    Published 2020
    “…By combining the particle swarm optimization algorithm with first-principles calculation, the high-pressure phase diagram of Zn–F binary compounds was established. …”
  10. 10

    Comparisons between ADAM and NADAM optimizers. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  11. 11

    Classification performance after optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  12. 12

    ANOVA test for optimization results. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  13. 13

    Wilcoxon test results for optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  14. 14
  15. 15

    Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx by Yupeng Li (507508)

    Published 2023
    “…</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …”
  16. 16

    Wilcoxon test results for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  17. 17

    Feature selection metrics and their definitions. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  18. 18

    Statistical summary of all models. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  19. 19

    Feature selection results. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  20. 20

    ANOVA test for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”