Search alternatives:
while optimization » whale optimization (Expand Search), wolf optimization (Expand Search), phase optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
data based » data used (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a while » a whole (Expand Search), a white (Expand Search)
while optimization » whale optimization (Expand Search), wolf optimization (Expand Search), phase optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
data based » data used (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a while » a whole (Expand Search), a white (Expand Search)
-
1
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
2
Features selected by optimization algorithms.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
3
-
4
-
5
S1 Data -
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
6
Parameter settings for algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
7
Parameter settings for algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
8
Average runtime of different algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
9
Average runtime of different algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
10
Flowchart of GJO-GWO algorithm.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
11
-
12
Routing policy based on path satisfaction.
Published 2025“…These enhancements aim to achieve optimal routing scheduling based on risk information. …”
-
13
Hybrid feature selection algorithm of CSCO-ROA.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
14
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
-
15
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
16
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
17
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
18
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
19
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
20
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: