Showing 1 - 20 results of 112 for search '(( binary a wolf optimization algorithm ) OR ( binary based learning indication algorithms ))', query time: 0.64s Refine Results
  1. 1
  2. 2
  3. 3

    Parameter settings of the comparison algorithms. by Ying Li (38224)

    Published 2024
    “…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  4. 4

    Class distribution for binary classes. by Toheeb Salahudeen (21368040)

    Published 2025
    “…This study employed advanced machine learning techniques to classify major depressive disorders based on clinical indicators and mitochondrial oxidative stress markers. …”
  5. 5

    Model 1: All Variables for binary classification. by Toheeb Salahudeen (21368040)

    Published 2025
    “…This study employed advanced machine learning techniques to classify major depressive disorders based on clinical indicators and mitochondrial oxidative stress markers. …”
  6. 6

    Raw Data for "Development of Decision Support Systems Based on Fuzzy and Binary Logic for the FOREX Foreign Exchange Market" by Serhii Hetsko (22413559)

    Published 2025
    “…</b>The aim of this work is to develop multi-timeframe hybrid DSS for algorithmic trading based on fuzzy and classical binary logic with probabilistic elements. …”
  7. 7

    Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm by Hussein Ali Bardan (21976208)

    Published 2025
    “…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
  8. 8
  9. 9

    Algorithm for generating hyperparameter. by Balraj Preet Kaur (20370832)

    Published 2024
    “…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  10. 10

    Results of machine learning algorithm. by Balraj Preet Kaur (20370832)

    Published 2024
    “…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  11. 11

    ML algorithms used in this study. by Toheeb Salahudeen (21368040)

    Published 2025
    “…This study employed advanced machine learning techniques to classify major depressive disorders based on clinical indicators and mitochondrial oxidative stress markers. …”
  12. 12

    ROC comparison of machine learning algorithm. by Balraj Preet Kaur (20370832)

    Published 2024
    “…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  13. 13

    The flowchart of the proposed algorithm. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  14. 14

    Comparison in terms of the sensitivity. by Ying Li (38224)

    Published 2024
    “…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  15. 15

    Parameter sensitivity of BIMGO. by Ying Li (38224)

    Published 2024
    “…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  16. 16

    Details of the medical datasets. by Ying Li (38224)

    Published 2024
    “…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  17. 17

    The flowchart of IMGO. by Ying Li (38224)

    Published 2024
    “…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  18. 18

    Comparison in terms of the selected features. by Ying Li (38224)

    Published 2024
    “…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  19. 19

    Iterative chart of control factor. by Ying Li (38224)

    Published 2024
    “…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  20. 20

    Details of 23 basic benchmark functions. by Ying Li (38224)

    Published 2024
    “…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”