بدائل البحث:
object optimization » objective optimization (توسيع البحث), objectives optimization (توسيع البحث), robust optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a wolf » _ wolf (توسيع البحث)
object optimization » objective optimization (توسيع البحث), objectives optimization (توسيع البحث), robust optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a wolf » _ wolf (توسيع البحث)
-
41
Adaboost classifier results.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
42
Results of Lightbgm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
43
Results of Lightbgm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
44
Feature selection process.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
45
Results of KNN.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
46
After upsampling.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
47
Results of Extra tree.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
48
Gradient boosting classifier results.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
49
SHAP bar plot.
منشور في 2025"…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…"
-
50
Sample screening flowchart.
منشور في 2025"…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…"
-
51
Descriptive statistics for variables.
منشور في 2025"…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…"
-
52
SHAP summary plot.
منشور في 2025"…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…"
-
53
ROC curves for the test set of four models.
منشور في 2025"…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…"
-
54
Display of the web prediction interface.
منشور في 2025"…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…"
-
55
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
منشور في 2019"…This method aligns the color image to the depth image, and the color mapping image is converted to an HSV image. Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …"
-
56
An Example of a WPT-MEC Network.
منشور في 2025"…The objective is to optimize binary offloading decisions under dynamic wireless channel conditions and energy harvesting constraints. …"
-
57
Related Work Summary.
منشور في 2025"…The objective is to optimize binary offloading decisions under dynamic wireless channel conditions and energy harvesting constraints. …"
-
58
Simulation parameters.
منشور في 2025"…The objective is to optimize binary offloading decisions under dynamic wireless channel conditions and energy harvesting constraints. …"
-
59
Training losses for N = 10.
منشور في 2025"…The objective is to optimize binary offloading decisions under dynamic wireless channel conditions and energy harvesting constraints. …"
-
60
Normalized computation rate for N = 10.
منشور في 2025"…The objective is to optimize binary offloading decisions under dynamic wireless channel conditions and energy harvesting constraints. …"