يعرض 21 - 34 نتائج من 34 نتيجة بحث عن '(( binary active space optimization algorithm ) OR ( binary case based optimization algorithm ))', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 21

    NSL-KDD dataset description. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  2. 22

    The architecture of LSTM cell. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  3. 23

    The architecture of ILSTM. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  4. 24

    Parameter setting for LSTM. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  5. 25

    LITNET-2020 data splitting approach. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  6. 26

    Transformation of symbolic features in NSL-KDD. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  7. 27

    Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction حسب Raul A. Flores (2910539)

    منشور في 2020
    "…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…"
  8. 28
  9. 29

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf حسب Cecilia Lindig-León (7889777)

    منشور في 2020
    "…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …"
  10. 30

    Thesis-RAMIS-Figs_Slides حسب Felipe Santibañez-Leal (10967991)

    منشور في 2024
    "…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…"
  11. 31
  12. 32

    DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx حسب Yuhong Huang (115702)

    منشور في 2021
    "…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …"
  13. 33

    Models and Dataset حسب M RN (9866504)

    منشور في 2025
    "…Operating in a binary search space, TJO simulates intelligent and evasive movements of the prey to guide the population toward optimal solutions. …"
  14. 34

    Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield... حسب Uttam Khatri (12689072)

    منشور في 2022
    "…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …"