بدائل البحث:
based classification » image classification (توسيع البحث), binary classification (توسيع البحث), _ classification (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
binary mapk » binary mask (توسيع البحث), binary image (توسيع البحث)
mapk guided » marker guided (توسيع البحث), image guided (توسيع البحث)
binary age » binary image (توسيع البحث), binary edge (توسيع البحث)
age based » agent based (توسيع البحث), image based (توسيع البحث), made based (توسيع البحث)
based classification » image classification (توسيع البحث), binary classification (توسيع البحث), _ classification (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
binary mapk » binary mask (توسيع البحث), binary image (توسيع البحث)
mapk guided » marker guided (توسيع البحث), image guided (توسيع البحث)
binary age » binary image (توسيع البحث), binary edge (توسيع البحث)
age based » agent based (توسيع البحث), image based (توسيع البحث), made based (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
Presentation_1_Classification of expert-level therapeutic decisions for degenerative cervical myelopathy using ensemble machine learning algorithms.pdf
منشور في 2022"…We performed the following classifications using ML algorithms: multiclass, one-versus-rest, and one-versus-one. …"
-
7
-
8
Data XGBOOST.
منشور في 2025"…Extreme Gradient Boosting (XGBoost), a machine learning algorithm, was employed for binary classification (low-moderate vs. high physical activity). …"
-
9
Table_1_Prediction of spherical equivalent difference before and after cycloplegia in school-age children with machine learning algorithms.DOCX
منشور في 2023"…Purpose<p>To predict the need for cycloplegic assessment, as well as refractive state under cycloplegia, based on non-cycloplegic ocular parameters in school-age children.…"
-
10
-
11
-
12
-
13
DataSheet_1_Patient-Level Effectiveness Prediction Modeling for Glioblastoma Using Classification Trees.docx
منشور في 2020"…Secondly, a classification tree algorithm was trained and validated for dividing individual patients into treatment response and non-response groups. …"
-
14
Partial dependence plots (A – G) and the resulting clustered feature importance (H) for each feature and trained model.
منشور في 2025"…In H), we hierarchically clustered (Euclidean distance with average linking) the feature importance resulting from the normalized variance in the partial dependence plots for each trained model. Tree-based algorithms (i.e., Decision Tree, Random Forest, XGBoost, and RUSBoost) are grouped together indicating similar underlying mechanisms for the classification. …"
-
15
Dataset selection process and exclusion criteria.
منشور في 2020"…****Severance Dataset A: a total of 10,426 cases (40,331 images; 43 disorders; age mean ± SD = 52.1 ± 18.3, male 45.1%) used for the binary classification (cancer or not). …"
-
16
-
17
-
18
Table_1_Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis.docx
منشور في 2022"…Several prognostic models have been created utilizing multivariate Cox regression or binary classification-based machine learning approaches to predict the 3- and 5-year survival of patients with chondrosarcoma, but few studies have investigated the results of combining deep learning with time-to-event prediction. …"
-
19
DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx
منشور في 2021"…We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …"
-
20
Table_1_Machine learning models identify micronutrient intake as predictors of undiagnosed hypertension among rural community-dwelling older adults in Thailand: a cross-sectional s...
منشور في 2024"…Objective<p>To develop a predictive model for undiagnosed hypertension (UHTN) in older adults based on five modifiable factors [eating behaviors, emotion, exercise, stopping smoking, and stopping drinking alcohol (3E2S) using machine learning (ML) algorithms.…"