Showing 1 - 15 results of 15 for search '(( binary age based optimization algorithm ) OR ( binary image loop optimization algorithm ))', query time: 0.45s Refine Results
  1. 1

    SHAP bar plot. by Meng Cao (105914)

    Published 2025
    “…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
  2. 2

    Sample screening flowchart. by Meng Cao (105914)

    Published 2025
    “…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
  3. 3

    Descriptive statistics for variables. by Meng Cao (105914)

    Published 2025
    “…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
  4. 4

    SHAP summary plot. by Meng Cao (105914)

    Published 2025
    “…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
  5. 5

    ROC curves for the test set of four models. by Meng Cao (105914)

    Published 2025
    “…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
  6. 6

    Display of the web prediction interface. by Meng Cao (105914)

    Published 2025
    “…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
  7. 7
  8. 8
  9. 9
  10. 10

    Flow diagram of the automatic animal detection and background reconstruction. by David Tadres (9120564)

    Published 2020
    “…If the identical blob that was detected in panel J (bottom) is found in any of the new subtracted binary images (cyan arrow), the animal is considered as having left its original position, and the algorithm continues. …”
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx by Yuhong Huang (115702)

    Published 2021
    “…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …”