بدائل البحث:
based optimization » whale optimization (توسيع البحث)
event detection » defect detection (توسيع البحث), object detection (توسيع البحث)
binary basic » binary mask (توسيع البحث)
binary aged » binary image (توسيع البحث)
basic event » cosmic event (توسيع البحث)
aged based » agent based (توسيع البحث), acid based (توسيع البحث), seed based (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
event detection » defect detection (توسيع البحث), object detection (توسيع البحث)
binary basic » binary mask (توسيع البحث)
binary aged » binary image (توسيع البحث)
basic event » cosmic event (توسيع البحث)
aged based » agent based (توسيع البحث), acid based (توسيع البحث), seed based (توسيع البحث)
-
1
-
2
SHAP bar plot.
منشور في 2025"…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
3
Sample screening flowchart.
منشور في 2025"…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
4
Descriptive statistics for variables.
منشور في 2025"…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
5
SHAP summary plot.
منشور في 2025"…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
6
ROC curves for the test set of four models.
منشور في 2025"…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
7
Display of the web prediction interface.
منشور في 2025"…Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
8
-
9
-
10
-
11
-
12
-
13
DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx
منشور في 2021"…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …"