Search alternatives:
based classification » image classification (Expand Search), binary classification (Expand Search), _ classification (Expand Search)
scale optimization » whale optimization (Expand Search), swarm optimization (Expand Search), phase optimization (Expand Search)
also based » also caused (Expand Search), also used (Expand Search), also asked (Expand Search)
based classification » image classification (Expand Search), binary classification (Expand Search), _ classification (Expand Search)
scale optimization » whale optimization (Expand Search), swarm optimization (Expand Search), phase optimization (Expand Search)
also based » also caused (Expand Search), also used (Expand Search), also asked (Expand Search)
-
1
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
2
-
3
-
4
-
5
-
6
-
7
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
8
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
9
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
10
Association between crowding and oral habits.
Published 2025“…The dataset was created, and AI-based binary classification models for malocclusion were developed using an automated machine learning platform (DataRobot) to construct three algorithms for determining malocclusion (deep bite, maxillary protrusion, and crowding). …”
-
11
Association between deep bite and oral habits.
Published 2025“…The dataset was created, and AI-based binary classification models for malocclusion were developed using an automated machine learning platform (DataRobot) to construct three algorithms for determining malocclusion (deep bite, maxillary protrusion, and crowding). …”
-
12
Breakdown of participants by residential area.
Published 2025“…The dataset was created, and AI-based binary classification models for malocclusion were developed using an automated machine learning platform (DataRobot) to construct three algorithms for determining malocclusion (deep bite, maxillary protrusion, and crowding). …”
-
13
Each variable for the dataset.
Published 2025“…The dataset was created, and AI-based binary classification models for malocclusion were developed using an automated machine learning platform (DataRobot) to construct three algorithms for determining malocclusion (deep bite, maxillary protrusion, and crowding). …”
-
14
-
15
Presentation_1_Classification of expert-level therapeutic decisions for degenerative cervical myelopathy using ensemble machine learning algorithms.pdf
Published 2022“…We performed the following classifications using ML algorithms: multiclass, one-versus-rest, and one-versus-one. …”
-
16
-
17
-
18
-
19
Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke
Published 2019“…</p><p>Conclusions</p><p>Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. …”
-
20
Data_Sheet_1_Deep learning-based ultrasonographic classification of canine chronic kidney disease.docx
Published 2024“…The training scenarios consisted of multi-class classification, categorization of images into IRIS stages, and four binary classifications based on specific IRIS stages. …”