بدائل البحث:
simulation algorithm » segmentation algorithm (توسيع البحث), maximization algorithm (توسيع البحث), selection algorithm (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
process simulation » process optimization (توسيع البحث)
based process » based processes (توسيع البحث), based probes (توسيع البحث), based proteins (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
also based » also caused (توسيع البحث), also used (توسيع البحث), also asked (توسيع البحث)
simulation algorithm » segmentation algorithm (توسيع البحث), maximization algorithm (توسيع البحث), selection algorithm (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
process simulation » process optimization (توسيع البحث)
based process » based processes (توسيع البحث), based probes (توسيع البحث), based proteins (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
also based » also caused (توسيع البحث), also used (توسيع البحث), also asked (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
منشور في 2025"…A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. …"
-
6
MSE for ILSTM algorithm in binary classification.
منشور في 2023"…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
7
-
8
-
9
-
10
Algorithm for generating hyperparameter.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
11
-
12
Results of machine learning algorithm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
13
-
14
ROC comparison of machine learning algorithm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
15
-
16
The meanings of score S are based on the values of P<sub>obey</sub> and P<sub>violate</sub>.
منشور في 2022الموضوعات: -
17
-
18
-
19
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
20
Best optimizer results of Lightbgm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"