بدائل البحث:
based optimization » whale optimization (توسيع البحث)
used optimization » led optimization (توسيع البحث), guided optimization (توسيع البحث), field optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
also based » also caused (توسيع البحث), also used (توسيع البحث), also asked (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
used optimization » led optimization (توسيع البحث), guided optimization (توسيع البحث), field optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
also based » also caused (توسيع البحث), also used (توسيع البحث), also asked (توسيع البحث)
-
81
-
82
The list of parameters of the modified data set for machine learning (<i>n</i> = 162).
منشور في 2025الموضوعات: -
83
-
84
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
-
85
-
86
-
87
-
88
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
منشور في 2025"…To tackle these challenges, this paper proposes the Blockchain Based Trusted Distributed Routing Scheme for MANET using Latent Encoder Coupled Generative Adversarial Network Optimized with Binary Emperor Penguin Optimizer (LEGAN-BEPO-BCMANET). …"
-
89
ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
منشور في 2025الموضوعات: -
90
-
91
The comparison of the accuracy score of the benchmark and the proposed models.
منشور في 2025الموضوعات: -
92
-
93
-
94
Comparison of baseline and hybrid machine learning models in predicting IVF outcomes (%).
منشور في 2025الموضوعات: -
95
-
96
-
97
-
98
Calibration curve of the ABC–LR–RF hybrid model for IVF outcome prediction.
منشور في 2025الموضوعات: -
99
-
100
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. …"