Search alternatives:
based optimization » whale optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
also based » also caused (Expand Search), also used (Expand Search), also asked (Expand Search)
based optimization » whale optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
also based » also caused (Expand Search), also used (Expand Search), also asked (Expand Search)
-
61
-
62
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
Published 2024“…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
-
63
Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf
Published 2024“…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …”
-
64
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
-
65
Testing results for classifying AD, MCI and NC.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
66
Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data
Published 2021“…Specifically, the proposed method obtains the optimal DTR via integrating estimations of decision rules at multiple stages into a single multicategory classification algorithm without imposing additional constraints, which is also more computationally efficient and robust. …”
-
67
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
68
Pseudo Code of RBMO.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
69
P-value on CEC-2017(Dim = 30).
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
70
Memory storage behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
71
Elite search behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
72
Description of the datasets.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
73
S and V shaped transfer functions.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
74
S- and V-Type transfer function diagrams.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
75
Collaborative hunting behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
76
Friedman average rank sum test results.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
77
IRBMO vs. variant comparison adaptation data.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
78
the functioning of BRPSO.
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
79
Characteristic of 6- and 10-story SMRF [99,98].
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
80
The RFD’s behavior mechanism (2002).
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”