يعرض 61 - 80 نتائج من 102 نتيجة بحث عن '(( binary also derived optimization algorithm ) OR ( binary data process optimization algorithm ))*', وقت الاستعلام: 0.97s تنقيح النتائج
  1. 61
  2. 62

    A* Path-Finding Algorithm to Determine Cell Connections حسب Max Weng (22327159)

    منشور في 2025
    "…</p><p dir="ltr">Astrocytes were dissociated from E18 mouse cortical tissue, and image data were processed using a Cellpose 2.0 model to mask nuclei. …"
  3. 63
  4. 64

    Dynamic resource allocation process. حسب Yixian Wen (12201388)

    منشور في 2025
    "…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
  5. 65

    An Example of a WPT-MEC Network. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  6. 66

    Related Work Summary. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  7. 67

    Simulation parameters. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  8. 68

    Training losses for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  9. 69

    Normalized computation rate for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  10. 70

    Summary of Notations Used in this paper. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  11. 71
  12. 72

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports حسب Olivier Q. Groot (9370461)

    منشور في 2020
    "…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…"
  13. 73
  14. 74

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. حسب Jiaqing Luo (10975030)

    منشور في 2021
    "…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …"
  15. 75

    Fig 1 - حسب Jakub Stoklosa (3315042)

    منشور في 2023
  16. 76

    Summary of literature review. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  17. 77

    Topic description. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  18. 78

    Notations along with their descriptions. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  19. 79

    Detail of the topics extracted from DUC2002. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  20. 80