Showing 81 - 93 results of 93 for search '(( binary also feature optimization algorithm ) OR ( binary risk based optimization algorithm ))', query time: 0.59s Refine Results
  1. 81
  2. 82
  3. 83

    Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx by Yupeng Li (507508)

    Published 2023
    “…In bSRWPSO-FKNN, the core of which is to optimize the classification performance of FKNN through binary SRWPSO.…”
  4. 84

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  5. 85
  6. 86

    Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data by Fei Xue (24567)

    Published 2021
    “…In this article, we develop a novel angle-based approach to search the optimal DTR under a multicategory treatment framework for survival data. …”
  7. 87
  8. 88

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</a></p><p dir="ltr">More information:</p><ul><li><a href="https://www.hatemedia.es/" rel="nofollow" target="_blank">https://www.hatemedia.es/</a> or contact: <a href="mailto:elias.said@unir.net" target="_blank">elias.said@unir.net</a></li><li>This algorithm is related to the hate/non-hate classification algorithm, also developed by the authors: <a href="https://github.com/esaidh266/Algorithm-for-detection-of-hate-speech-in-Spanish" target="_blank">https://github.com/esaidh266/Algorithm-for-detection-of-hate-speech-in-Spanish</a></li><li>This algorithm is related to the algorithm for classifying hate expressions by intensities in Spanish, also developed by the authors: <a href="https://github.com/esaidh266/Algorithm-for-classifying-hate-expressions-by-intensities-in-Spanish" target="_blank">https://github.com/esaidh266/Algorithm-for-classifying-hate-expressions-by-intensities-in-Spanish</a></li></ul><p></p>…”
  9. 89

    Contextual Dynamic Pricing with Strategic Buyers by Pangpang Liu (18886419)

    Published 2024
    “…In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. …”
  10. 90

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…Model evaluation was based on accuracy metrics and qualitative analysis of the confusion matrix.. …”
  11. 91

    Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield... by Uttam Khatri (12689072)

    Published 2022
    “…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
  12. 92

    Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model by Ramya Chinnasamy (21633527)

    Published 2025
    “…This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …”
  13. 93

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles by Soham Savarkar (21811825)

    Published 2025
    “…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”