Search alternatives:
segmentation algorithm » selection algorithm (Expand Search)
based optimization » whale optimization (Expand Search)
Showing 21 - 40 results of 43 for search '(( binary also image segmentation algorithm ) OR ( binary image based optimization algorithm ))', query time: 0.56s Refine Results
  1. 21
  2. 22

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf by Cecilia Lindig-León (7889777)

    Published 2020
    “…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
  3. 23
  4. 24

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  5. 25

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  6. 26

    Steps in the extraction of 14 coordinates from the CT slices for the curved MPR. by Linus Woitke (22783534)

    Published 2025
    “…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …”
  7. 27

    DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx by Yuhong Huang (115702)

    Published 2021
    “…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …”
  8. 28

    Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX by Umesh C. Sharma (10785063)

    Published 2021
    “…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …”
  9. 29

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  10. 30

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  11. 31

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  12. 32

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  13. 33
  14. 34

    Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx by Veera Narayana Balabathina (22518524)

    Published 2025
    “…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
  15. 35
  16. 36

    Imaging of the zebrafish tectum. by Giovanni Diana (7610630)

    Published 2019
    “…In all experiments we recorded calcium activity for 1 hour throughout 5 planes, 15<i>μ</i>m apart with an acquisition frequency of 4.8Hz per volume. (B) Raw images (top) were segmented (bottom) to obtain the temporal dynamics of calcium of thousands of neuron in the tectum (see also <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1007481#pcbi.1007481.s009" target="_blank">S1 Video</a>). …”
  17. 37
  18. 38

    DataSheet_1_Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.docx by Jun Zhang (48506)

    Published 2024
    “…Utilizing the binary “One-vs-Rest” strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. …”
  19. 39

    Table_2_Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols.docx by Bettina Katalin Budai (13951317)

    Published 2022
    “…A support vector machine algorithm-based binary classifier (SVC) was constructed to predict tumor types and its performance was evaluated based-on receiver operating characteristic curve (ROC) analysis. …”
  20. 40

    Table_1_Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols.DOCX by Bettina Katalin Budai (13951317)

    Published 2022
    “…A support vector machine algorithm-based binary classifier (SVC) was constructed to predict tumor types and its performance was evaluated based-on receiver operating characteristic curve (ROC) analysis. …”