بدائل البحث:
process optimization » model optimization (توسيع البحث)
lead optimization » global optimization (توسيع البحث), swarm optimization (توسيع البحث), whale optimization (توسيع البحث)
binary complex » ternary complex (توسيع البحث), snare complex (توسيع البحث)
also lead » also led (توسيع البحث)
process optimization » model optimization (توسيع البحث)
lead optimization » global optimization (توسيع البحث), swarm optimization (توسيع البحث), whale optimization (توسيع البحث)
binary complex » ternary complex (توسيع البحث), snare complex (توسيع البحث)
also lead » also led (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
13
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
14
-
15
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
16
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
17
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
18
Classification performance after optimization.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
19
ANOVA test for optimization results.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
20
Wilcoxon test results for optimization.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"