Search alternatives:
reduced optimization » required optimization (Expand Search), resource optimization (Expand Search), based optimization (Expand Search)
basis optimization » based optimization (Expand Search), task optimization (Expand Search), acid optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
reduced optimization » required optimization (Expand Search), resource optimization (Expand Search), based optimization (Expand Search)
basis optimization » based optimization (Expand Search), task optimization (Expand Search), acid optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…By leveraging the binary GWO algorithm to optimize the feature selection </p><p dir="ltr">process and CNNs for image classification, the proposed approach reduces computational costs while increasing </p><p dir="ltr">classification accuracy. …”
-
9
Classification baseline performance.
Published 2025“…Crucially, this optimization also results in a substantial clinical performance gain, with sensitivity increasing from 86.02% to 98.34% (+12.32%), specificity rising from 86.53% to 98.14% (+11.61%), and the false negative rate being significantly reduced, thereby enhancing diagnostic reliability in critical scenarios. …”
-
10
Feature selection results.
Published 2025“…Crucially, this optimization also results in a substantial clinical performance gain, with sensitivity increasing from 86.02% to 98.34% (+12.32%), specificity rising from 86.53% to 98.14% (+11.61%), and the false negative rate being significantly reduced, thereby enhancing diagnostic reliability in critical scenarios. …”
-
11
ANOVA test result.
Published 2025“…Crucially, this optimization also results in a substantial clinical performance gain, with sensitivity increasing from 86.02% to 98.34% (+12.32%), specificity rising from 86.53% to 98.14% (+11.61%), and the false negative rate being significantly reduced, thereby enhancing diagnostic reliability in critical scenarios. …”
-
12
Summary of literature review.
Published 2025“…Crucially, this optimization also results in a substantial clinical performance gain, with sensitivity increasing from 86.02% to 98.34% (+12.32%), specificity rising from 86.53% to 98.14% (+11.61%), and the false negative rate being significantly reduced, thereby enhancing diagnostic reliability in critical scenarios. …”
-
13
Algorithm for generating hyperparameter.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
14
Results of machine learning algorithm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
15
ROC comparison of machine learning algorithm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
16
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
Published 2022“…Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …”
-
17
Best optimizer results of Lightbgm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
18
Best optimizer results of Adaboost.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
19
Best optimizer results of Lightbgm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
20
Random forest with hyperparameter optimization.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”