بدائل البحث:
resource optimization » resource utilization (توسيع البحث), resource utilisation (توسيع البحث), resource limitations (توسيع البحث)
also resource » actor resource (توسيع البحث), value resource (توسيع البحث), low resource (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data swarm » data share (توسيع البحث)
resource optimization » resource utilization (توسيع البحث), resource utilisation (توسيع البحث), resource limitations (توسيع البحث)
also resource » actor resource (توسيع البحث), value resource (توسيع البحث), low resource (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data swarm » data share (توسيع البحث)
-
1
-
2
-
3
Dynamic resource allocation process.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
4
Supplementary file 1_Encodings of the weighted MAX k-CUT problem on qubit systems.pdf
منشور في 2025"…This study explores encoding methods for MAX k-CUT on qubit systems by utilizing quantum approximate optimization algorithms (QAOA) and addressing the challenge of encoding integer values on quantum devices with binary variables. …"
-
5
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
منشور في 2019"…Because of the semipredictive nature of the symmetric eNRTL-SAC model, the segment parameter regression is a critical step for solubility prediction accuracy. A particle swarm optimization algorithm is incorporated to preregress conceptual segment parameters of solutes. …"
-
6
-
7
Confusion matrix.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
8
Parameter settings.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
9
Event-driven data flow processing.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
10
Thesis-RAMIS-Figs_Slides
منشور في 2024"…In this direction, the option of estimating the statistics of the model directly from the training image (performing a refined pattern search instead of simulating data) is a very promising.<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…"
-
11
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
12
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
13
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"