Search alternatives:
structure optimization » structural optimization (Expand Search), structure determination (Expand Search)
mixture optimization » feature optimization (Expand Search), resource optimization (Expand Search), after optimization (Expand Search)
also structure » olson structure (Expand Search), age structure (Expand Search), cost structure (Expand Search)
structure optimization » structural optimization (Expand Search), structure determination (Expand Search)
mixture optimization » feature optimization (Expand Search), resource optimization (Expand Search), after optimization (Expand Search)
also structure » olson structure (Expand Search), age structure (Expand Search), cost structure (Expand Search)
-
1
Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures
Published 2021“…Both in silico design and data analysis descriptors and norm index were employed to encode the structural characteristics of binary IL mixtures. The subset of optimal descriptors was screened by combining the genetic algorithm with the multiple linear regression method. …”
-
2
-
3
-
4
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025“…The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. …”
-
5
-
6
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…Additionally, the results obtained from our new ILP model indicate that our genetic algorithm results are very close to the optimal values.…”
-
7
the functioning of BRPSO.
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
8
Characteristic of 6- and 10-story SMRF [99,98].
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
9
The RFD’s behavior mechanism (2002).
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
10
Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity
Published 2019“…We tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxonomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenUniq. Binary mixtures of bacteria showed all three reliably identified organisms down to 1% relative abundance, while only the relative abundance estimates of Centrifuge and CLARK were accurate. …”
-
11
-
12
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
Published 2022“…We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …”
-
13
-
14
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
15
-
16
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
Published 2019“…The model moreover predicts solubilities in binary solvent mixture and as a function of temperature in satisfactory agreement with experimental solubility.…”
-
17
-
18
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
Published 2024“…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
-
19
Silibinin solubilization: combined effect of co-solvency and inclusion complex formation
Published 2024“…The solubility in PBS-ethanol mixtures followed a log-linear model. SLB solubility in the presence of the ethanol co-solvent and HP-β-CD complexing agent was optimized by adopting a genetic algorithm suggesting the phosphate buffer saline solution supplemented by 6%v/v ethanol and 8 mM HP-β-CD as an optimized medium. …”
-
20
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”