Search alternatives:
structure optimization » structural optimization (Expand Search), structure determination (Expand Search)
based optimization » whale optimization (Expand Search)
also structure » olson structure (Expand Search), age structure (Expand Search), cost structure (Expand Search)
binary task » binary mask (Expand Search)
task based » risk based (Expand Search)
structure optimization » structural optimization (Expand Search), structure determination (Expand Search)
based optimization » whale optimization (Expand Search)
also structure » olson structure (Expand Search), age structure (Expand Search), cost structure (Expand Search)
binary task » binary mask (Expand Search)
task based » risk based (Expand Search)
-
1
-
2
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
3
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
4
-
5
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
6
-
7
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
8
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
9
-
10
Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures
Published 2021“…Both in silico design and data analysis descriptors and norm index were employed to encode the structural characteristics of binary IL mixtures. The subset of optimal descriptors was screened by combining the genetic algorithm with the multiple linear regression method. …”
-
11
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
12
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
13
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
14
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
15
Normalized computation rate for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
16
Summary of Notations Used in this paper.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
17
-
18
-
19
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…Additionally, the results obtained from our new ILP model indicate that our genetic algorithm results are very close to the optimal values.…”
-
20
Pseudo Code of RBMO.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”