Search alternatives:
learning optimization » learning motivation (Expand Search), lead optimization (Expand Search)
based optimization » whale optimization (Expand Search)
data learning » meta learning (Expand Search), deep learning (Expand Search), a learning (Expand Search)
primary data » primary care (Expand Search)
binary arm » binary pairs (Expand Search)
arm based » aom based (Expand Search), swarm based (Expand Search), form based (Expand Search)
learning optimization » learning motivation (Expand Search), lead optimization (Expand Search)
based optimization » whale optimization (Expand Search)
data learning » meta learning (Expand Search), deep learning (Expand Search), a learning (Expand Search)
primary data » primary care (Expand Search)
binary arm » binary pairs (Expand Search)
arm based » aom based (Expand Search), swarm based (Expand Search), form based (Expand Search)
-
1
Features selected by optimization algorithms.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
2
-
3
-
4
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
5
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
6
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
7
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
8
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
9
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
10
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024Subjects: -
11
-
12
-
13
-
14
Short overview of the primary dataset.
Published 2023“…The proposed research comprised of machine learning (ML) algorithms is Naïve Bayes (NB), Library Support Vector Machine (LibSVM), Multinomial Logistic Regression (MLR), Sequential Minimal Optimization (SMO), K Nearest Neighbor (KNN), and Random Forest (RF) to compare the classifier gives better results in accuracy and less fault prediction. …”
-
15
Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level
Published 2021“…We fill the gap by developing an iterative matching algorithm for the three-group setting. Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …”
-
16
Hybrid feature selection algorithm of CSCO-ROA.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
17
Data_Sheet_1_Prediction of patient choice tendency in medical decision-making based on machine learning algorithm.pdf
Published 2023“…Objective<p>Machine learning (ML) algorithms, as an early branch of artificial intelligence technology, can effectively simulate human behavior by training on data from the training set. …”
-
18
-
19
-
20