بدائل البحث:
learning optimization » learning motivation (توسيع البحث), lead optimization (توسيع البحث)
driven optimization » design optimization (توسيع البحث), guided optimization (توسيع البحث), dose optimization (توسيع البحث)
binary arm » binary pairs (توسيع البحث)
arm driven » ai driven (توسيع البحث), atp driven (توسيع البحث)
a learning » _ learning (توسيع البحث), e learning (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
learning optimization » learning motivation (توسيع البحث), lead optimization (توسيع البحث)
driven optimization » design optimization (توسيع البحث), guided optimization (توسيع البحث), dose optimization (توسيع البحث)
binary arm » binary pairs (توسيع البحث)
arm driven » ai driven (توسيع البحث), atp driven (توسيع البحث)
a learning » _ learning (توسيع البحث), e learning (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
-
161
-
162
Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports
منشور في 2020"…A stratified 80:20 split was used to develop and test an extreme-gradient boosting supervised machine learning NLP algorithm.…"
-
163
-
164
DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx
منشور في 2021"…Objective<p>To investigate whether radiomics features extracted from multi-parametric MRI combining machine learning approach can predict molecular subtype and androgen receptor (AR) expression of breast cancer in a non-invasive way.…"
-
165
Flowchart of the entire pipeline.
منشور في 2024"…Then, the protein feature generation algorithms described in our previous study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0315330#pone.0315330.ref022" target="_blank">22</a>] are applied to the data, and pairwise ML models are trained and evaluated (see Section Evaluation of pairwise machine learning models). …"
-
166
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
167
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
168
Data_Sheet_1_The impact of family urban integration on migrant worker mental health in China.docx
منشور في 2024"…</p>Methods<p>This paper uses multi-dimensional indexes to measure family urban integration, covering economic, social and psychological dimensions, which may consider the complexity of integration. Utilizing a machine learning clustering algorithm, the research endeavors to assess the level of urban integration experienced by migrant workers and their respective families. …"
-
169
-
170
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
منشور في 2025"…</p>Methods<p>To address these challenges, we propose a novel AI-driven framework that incorporates two key methodological innovations: CardioSpectra, a structured sparse inference model, and Risk-Stratified Exertional Embedding (RSEE), a domain-specific representation learning strategy. …"
-
171
Supplementary Material 8
منشور في 2025"…</p><h4><b>10 Supervised machine learning classifiers for </b><b><i>E.coli</i></b><b> genome analysis:</b></h4><ol><li><b>Logistic regression (LR): </b> A simple yet effective statistical model for binary classification, such as predicting antibiotic resistance or susceptibility in <i>E. coli</i>.…"
-
172
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
منشور في 2025"…The analysis was conducted in a Jupyter Notebook environment, using Python and libraries such as Scikit-learn and Pandas. …"