Showing 1 - 20 results of 25 for search '(( binary art model optimization algorithm ) OR ( binary mixed global optimization algorithm ))', query time: 0.43s Refine Results
  1. 1
  2. 2

    Data_Sheet_1_A Global Optimizer for Nanoclusters.PDF by Maya Khatun (7437011)

    Published 2019
    “…<p>We have developed an algorithm to automatically build the global minimum and other low-energy minima of nanoclusters. …”
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm by Hussein Ali Bardan (21976208)

    Published 2025
    “…The goal of this </p><p dir="ltr">research is to combine state-of-the-art deep learning techniques with optimization algorithms to develop a precise </p><p dir="ltr">and efficient predictive system for melanoma detection. …”
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18

    Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model by Getachew S. Molla (6416744)

    Published 2019
    “…The methodology incorporates key features of the symmetric eNRTL-SAC model structure to reduce the number of parameters and uses a hybrid of global search algorithms for parameter estimation. …”
  19. 19

    Classification baseline performance. by Doaa Sami Khafaga (21463870)

    Published 2025
    “…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
  20. 20

    Feature selection results. by Doaa Sami Khafaga (21463870)

    Published 2025
    “…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”